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Challenges
• Which portion of input is processed 

by which device ?


• Static Partitioning input is a good 
solution to obtain high performance 
on heterogeneous platforms.


• However, compute capability of 
each entity is different & 
performance of device is dependent 
on nature of input. 


• Simple/Static partitioning is not 
optimal.


• Is it possible to come up with 
partitioning techniques for 
heterogenous platforms and 
applications ?



Our Goal

• To propose a novel heterogeneous algorithm for sparse 
matrix-matrix multiplication that, 

• not only, balances load across heterogeneous devices 
in computing platform. 

• but also, assigns "right" work to the "right" processor.



Sparse Matrix

• Matrix in which most of the elements are zero. 

• i.e. nnz = k * n


• Example



Real-World Matrices

Usually datasets in Data 
Mining, Social Network 
Analysis & Communication 
Networks are very large. 



Nature of Real-world 
Matrices

These graphs are highly 
irregular & scale-free with 
a power-law degree 
distribution.

Dense Row



Sparse Matrix-Matrix Multiplication

• Compute C = A x B, where A, B are two sparse matrices. 

• Why is it hard in a heterogeneous setting ? 

• Sparse nature of matrix makes it hard for programmers 
to exploit CPU’s cache hierarchy (tiling) to achieve 
performance. 

• Irregular computation implies thread load imbalance & 
hence not suitable for GPUs.



Row-Row Formulation

• K. Matam et. al, proved row-row formulation of matrix 
multiplication out performs usual row-column formulation 
for SPMM in GPUs.

C(i,:) = A(i, j)*B( j,:)
j∈Ii(A)∑
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Thread Load Imbalance

x



HH-CPU

• Classify each row of sparse matrix into high dense and 
low dense. Now we can write SPMM as, 

C = A x B 
=> C = (AH + AL) x (BH + BL) 
=> C = AH x BH + AL x BL + AH x BL + AL x BH


• Each multiplication above has certain properties that 
helps us to map it to a device that performs better.



Example

0 2 1 0
0 1 0 0
3 2 2 1
0 0 0 5

A = B =

3 4 2 1

0 1 0 0

6 12 7 7

0 0 0 25

C =
0 2 1 0
0 1 0 0
3 2 2 1
0 0 0 5



Example

0 2 1 0
0 1 0 0
3 2 2 1
0 0 0 5

A = B =

3 4 2 1

0 1 0 0

6 12 7 7

0 0 0 25

C =
0 2 1 0
0 1 0 0
3 2 2 1
0 0 0 5

0 2 1 0
0 0 0 0
3 2 2 1
0 0 0 0

AH =
0 2 1 0
0 0 0 0
3 2 2 1
0 0 0 0

BH =
3 2 2 1
0 0 0 0
6 10 7 2
0 0 0 0

AH x BH =



Example

0 2 1 0
0 1 0 0
3 2 2 1
0 0 0 5

A = B =

3 4 2 1

0 1 0 0

6 12 7 7

0 0 0 25

C =
0 2 1 0
0 1 0 0
3 2 2 1
0 0 0 5

3 2 2 1
0 0 0 0
6 10 7 2
0 0 0 0

AH x BH

+



Example

0 2 1 0
0 1 0 0
3 2 2 1
0 0 0 5

A = B =

3 4 2 1

0 1 0 0

6 12 7 7

0 0 0 25

C =
0 2 1 0
0 1 0 0
3 2 2 1
0 0 0 5

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 5

AL =
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 5

BL =
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 25

AL x BL =

3 2 2 1
0 0 0 0
6 10 7 2
0 0 0 0

AH x BH

+



Example

0 2 1 0
0 1 0 0
3 2 2 1
0 0 0 5

A = B =

3 4 2 1

0 1 0 0

6 12 7 7

0 0 0 25

C =
0 2 1 0
0 1 0 0
3 2 2 1
0 0 0 5

3 2 2 1
0 0 0 0
6 10 7 2
0 0 0 0

AH x BH

+
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 25

AL x BL

+



Example

0 2 1 0
0 1 0 0
3 2 2 1
0 0 0 5

A = B =

3 4 2 1

0 1 0 0

6 12 7 7

0 0 0 25

C =
0 2 1 0
0 1 0 0
3 2 2 1
0 0 0 5

0 2 1 0
0 0 0 0
3 2 2 1
0 0 0 0

AH =
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 5

BL =
0 2 0 0
0 0 0 0
0 2 0 5
0 0 0 0

AH x BL =

3 2 2 1
0 0 0 0
6 10 7 2
0 0 0 0

AH x BH

+
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 25

AL x BL

+



Example

0 2 1 0
0 1 0 0
3 2 2 1
0 0 0 5

A = B =

3 4 2 1

0 1 0 0

6 12 7 7

0 0 0 25

C =
0 2 1 0
0 1 0 0
3 2 2 1
0 0 0 5

3 2 2 1
0 0 0 0
6 10 7 2
0 0 0 0

AH x BH

+
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 25

AL x BL

+
0 2 0 0
0 0 0 0
0 2 0 5
0 0 0 0

AH x BL

+



Example

0 2 1 0
0 1 0 0
3 2 2 1
0 0 0 5

A = B =

3 4 2 1

0 1 0 0

6 12 7 7

0 0 0 25

C =
0 2 1 0
0 1 0 0
3 2 2 1
0 0 0 5

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 5

AL =
0 2 1 0
0 0 0 0
3 2 2 1
0 0 0 0

BH =
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

AL x BH =

3 2 2 1
0 0 0 0
6 10 7 2
0 0 0 0

AH x BH

+
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 25

AL x BL

+
0 2 0 0
0 0 0 0
0 2 0 5
0 0 0 0

AH x BL

+



Example

0 2 1 0
0 1 0 0
3 2 2 1
0 0 0 5

A = B =

3 4 2 1

0 1 0 0

6 12 7 7

0 0 0 25

C =
0 2 1 0
0 1 0 0
3 2 2 1
0 0 0 5

3 2 2 1
0 0 0 0
6 10 7 2
0 0 0 0

AH x BH

+
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 25

AL x BL

+
0 2 0 0
0 0 0 0
0 2 0 5
0 0 0 0

AH x BL

+
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

AL x BH

=



Example

0 2 1 0
0 1 0 0
3 2 2 1
0 0 0 5

A = B =

3 4 2 1

0 1 0 0

6 12 7 7

0 0 0 25

C =
0 2 1 0
0 1 0 0
3 2 2 1
0 0 0 5

3 2 2 1
0 0 0 0
6 10 7 2
0 0 0 0

AH x BH

+
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 25

AL x BL

+
0 2 0 0
0 0 0 0
0 2 0 5
0 0 0 0

AH x BL

+
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

AL x BH

=
3 4 2 1

0 1 0 0

6 12 7 7

0 0 0 25



Phase I

• CPU, GPU :: Identify thresholds tA, tB and the matrices AH, 
AL, BH, BL.
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Phase I

• CPU, GPU :: Identify thresholds tA, tB and the matrices AH, 
AL, BH, BL.

A = 

tA

A = 

AH

AL



Phase II

• In parallel, 
CPU :: Compute AH * BH. 
GPU :: Compute AL * BL.
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Phase III

• In parallel, 
CPU :: Compute AL * BH. [WorkQueue Mode] 
GPU :: Compute AH * BL.
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• In parallel, 
CPU :: Compute AL * BH. [WorkQueue Mode] 
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Phase IV

• CPU, GPU :: Combine results of Phases II & III. 
• GPU to CPU :: Transfer the partial results from GPU to 

CPU.

AH x BH AL x BL AH x BL AL x BH + + +

A x B 



Timeline Diagram

CPU

GPU

Phase I Phase II Phase III Phase IV

Mark

AH x BH 

AL x BL 

AL x BH 

AH x BL Merge



Implementation Details

• Sparse matrices A, B are stored in CSR format. 

• We multiply A x A instead of A x B due to dataset unavailability. However we 
show results for A x B in synthetically generated data for experiments. 

• We consider only CPU & GPU for simplicity in the heterogeneous system. 

• Phase 1 :: Thresholds (tA, tB) are empirically obtained. 

• Phase 2, 3 :: We use modified version of Row_Row_SPMM developed by K. 
Matam et. al for SPMM of partial matrices. 

• Phase 3 :: Work units of CPU & GPU in work queue model is empirically 
determined a-priori. 

• Phase 4 :: Standard primitives like Mark, Scan & Merge are used.



Experimental Setup

• CPU :: Intel i7 980 

• GPU :: Nvidia Tesla K20c (Kepler) 

• CPU - GPU Link :: PCI Express version 2.0 link that 
supports data transfer bandwidth of 8 GB/s. 

• CUDA API Version 4.1 for Programming



Dataset (Scale-free &    )α

Matrix Rows NNZ
scircuit 1,70,998 9,58,936 3.55

Webbase-1M 10,00,005 31,05,536 2.1

cop20kA 1,21,192 26,24,331 143.8
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Results :: Overall Improvement
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Results :: Profiling
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Results :: Trade-Off
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Experiments with Synthetic Datasets
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Work Queue

• Why not apply work queue 
completely ?


• CPU, GPU works with bunch of 
rows (work-units) until all rows 
are finished.


• Now, always amount of time 
taken by CPU & GPU is (almost) 
equal.


• Is it optimal ?


• No, since the rows processed 
by CPU & GPU are random, it 
might not be suited for the 
device and hence not optimal.

CPU
GPU

Time

Almost Equal

CPU Start

CPU End

GPU Start

GPU End
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Sorted Work Queue
• Sort the rows such that nnz 

decreases. CPUs are better suited 
for top portion of the matrix as they 
are dense and can exploit cache 
hierarchy while bottom portion is 
suited for GPUs as input is almost 
regular.   


• Again amount of time taken by CPU 
& GPU is (almost) equal.


• Is it optimal ?


• No, since amount of computation 
done by each thread is primarily 
dependant on the non-zeros in the 
"B" matrix. This partition technique 
still leads to thread divergence inside 
a warp / block.
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Work Queue Vs HH-CPU
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Future Work

• Study analytical techniques to identify the threshold in 
Phase I of Algorithm HH-CPU 

• Similar algorithm can be designed for CSRMM, which 
multiplies a sparse matrix A with a dense matrix B.



References

• D. A. Bader and K. Madduri. GTgrpah: A suite of synthetic graph generators. 
Available at https://sdm.lbl.gov/⇠kamesh/software/GTgraph/ 

• A. Buluc and J. R. Gilbert. Challenges and advances in parallel sparse matrix-
matrix multiplication. In Proc. ICPP, pp 503–510, 2008. 

• S. Indarapu, M. Maramreddy, and K. Kothapalli. Architecture- and Workload-
aware algorithms for Spare Matrix- Vector Multiplication, Under submission, 2014. 

• K. Matam, S. Indarapu, and K. Kothapalli. Sparse Matrix Matrix Multiplication on 
Modern Architectures, in Proc. of HiPC, 2012. 

• NVIDIA cuSPARSE Library, https://developer.nvidia.com/cusparse 

• Stanford Network Analysis Platform dataset , http://www.cise.ufl.edu/ research/
sparse/matrices/SNAP/

https://developer.nvidia.com/cusparse


Thank You


